MeePwn CTF Quals 2018 - Still Old School
In this nice challenge we were given the following Python script and a TCP port to connect to:
from secret import flag, mask1, mask2
import string
import random
import sys
import os
import signal
import hashlib
from Crypto.Cipher import AES
menu = """
CHOOSE 1 OPTION
1. Encrypt message
2. Decrypt message
3. Get encrypted flag
4. Exit\n
"""
sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0)
bs = 16
def to_string(num, max_len = 128):
tmp = bin(num).lstrip('0b')[-max_len:].rjust(max_len, '0')
return "".join(chr(int(tmp[i:i+8], 2)) for i in range(0, max_len, 8))
def pad(s):
padnum = bs - len(s) % bs
return s + padnum * chr(padnum)
def unpad(s):
return s[:-ord(s[-1])]
def gen_key(mask):
tmp1 = random.random()
tmp2 = random.random()
key = int(tmp1 * 2**128) | int(tmp2 * 2**75) | (mask & 0x3fffff)
key = to_string(key)
return key
def encrypt_msg(msg, key1, key2):
iv = to_string(random.getrandbits(128))
aes1 = AES.new(key1, AES.MODE_CBC, iv)
aes2 = AES.new(key2, AES.MODE_CBC, iv)
enc = aes1.encrypt(aes2.encrypt(pad(msg)))
return (iv + enc).encode("hex")
def proof_of_work():
"""
This function has very special purpose
:)) Simply to screw you up
"""
prefix = to_string(random.getrandbits(64), 64)
print 'prefix = {}'.format(prefix.encode('hex'))
challenge = raw_input('> ')
tmp = hashlib.sha256(prefix + challenge).hexdigest()
if tmp.startswith('00000'):
return True
else:
return False
key1 = gen_key(mask1)
key2 = gen_key(mask2)
signal.alarm(300)
if not proof_of_work():
exit(0)
for _ in range(256):
print menu
try:
choice = int(raw_input("> "))
except:
print "wrong option"
exit(-1)
if choice == 1:
msg = raw_input("give me a string: ")
print encrypt_msg(msg, key1, key2)
elif choice == 2:
print "Not implement yet..."
elif choice == 3:
print encrypt_msg(flag, key1, key2)
elif choice == 4:
exit(-1)
else:
print "wrong option"
exit(-1)
So with this service we are able to get either the flag or a submitted string, encrypted two times with AES using two different keys:
def encrypt_msg(msg, key1, key2):
iv = to_string(random.getrandbits(128))
aes1 = AES.new(key1, AES.MODE_CBC, iv)
aes2 = AES.new(key2, AES.MODE_CBC, iv)
enc = aes1.encrypt(aes2.encrypt(pad(msg)))
return (iv + enc).encode("hex")
The two AES keys get generated on startup using Pythons random function:
def gen_key(mask):
tmp1 = random.random()
tmp2 = random.random()
key = int(tmp1 * 2**128) | int(tmp2 * 2**75) | (mask & 0x3fffff)
key = to_string(key)
return key
Each key also contains a secret mask that could be up to 22 bits long.
The to_string
method just creates a byte string out of the calculated numbers, equivalently to Python3’s int.to_bytes
.
Pythons random.random function is not a cryptographically secure RNG, so we should be able to recover the variables tmp1 and tmp2 once we get our hands on enough outputs.
Luckily, the used IV for the CBC mode encryption supplied to us uses the same PRNG:
iv = to_string(random.getrandbits(128))
After recovering the variables tmp1 and tmp2 for each key, we need to brute force the mask for each of the keys.
Reversing the Mersenne Twister
The server side uses Python2, which can be seen on the print
statements.
CPython 2.7 uses (as many other Interpreters and Libraries) the Mersenne Twister Pseudo Random Number
Generator.
The Mersenne Twister works on an internal state of 624 int32 values. The numbers of the internal state have the following relationship:
With N = 624
as the size of the internal state.
Meaning that every number depends on 3 numbers that came before it.
Before the current number is outputted, it gets mangled to meet some statistical properties. The CPython source code shows this:
[...]
y = mt[self->index++];
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return y;
So in order to recover the variable tmp1, we’d need to:
- Request 156 random IVs (since every IV is made of four
int32
) - Reverse the bit mangling of the output to receive the internal state
- Calculate the state which was used in the
random.random
function - Recreate the
gen_key
function with our recovered pseudo random number
Unfortunately it’s not that easy. But almost. By looking at the way, internal states get calculated we see that the last bit of our targeted state is lost in the process. The highest bit of our targeted state can be recovered by looking at the successor state (only the highest bit gets used, see above). This means we get 2 possible numbers per recovered internal state.
Since the random.random
function uses two int32 values:
static PyObject * random_random(RandomObject *self)
{
unsigned long a=genrand_int32(self)>>5, b=genrand_int32(self)>>6;
return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0));
}
We get 2*2
possible outputs per random.random
call. Since the function is called two times
per key and we have two keys, there are possibilities how each
keys could look like.
So after requesting 156 128-bit IVs we split them up in 32 bit chunks that represent the output of the mersenne twister:
def output128_to_32(outputs):
for o in outputs:
bn = o.to_bytes(16, "little")
for i in range(4):
outputs32.append(int.from_bytes(bn[i*4:(i+1)*4], "little"))
return outputs32
We then proceed to reverse the mangling of the outputs to get the internal state and finally calculate the candidates for all the pseudo random int32’s that were used during key generation:
def inv(x):
x ^= (x >> 18)
# Lowest 16 bit stay how they are, so we can just repeat...
x ^= (x << 15) & 0xEFC60000
# Do it step by step
x ^= (x << 7) & 0x1680
x ^= (x << 7) & 0xC4000
x ^= (x << 7) & 0xD200000
x ^= (x << 7) & 0x90000000
# Only highest 11 bits are untouched
x ^= (x >> 11) & 0xFFC00000
# Do step by step again
x ^= (x >> 11) & 0x3FF800
x ^= (x >> 11) & 0x7FF
return x
def recover_state(i, outputs32):
"""
return all possible candidates for state how it was (i-624) iterations ago!
"""
Y = inv(outputs32[i - 1])
h_1 = Y ^ inv(outputs32[i - 227 - 1])
Y_old = inv(outputs32[i])
h_1_msb = ((Y_old ^ inv(outputs32[i - 227]))>>30) & 1
h_2 = h_1
h_2_alt = h_1 ^ 0x9908B0DF
# even case
h_2 = (h_2 << 1) & 0x7fffffff
# odd case
h_2_alt = ((h_2_alt << 1)|1) & 0x7fffffff
# Add the missing highest bit (recovered from successive output)
h_2 = (h_1_msb<<31)|h_2
h_2_alt = (h_1_msb<<31)|h_2_alt
candidates = [h_2, h_2_alt]
return candidates
We then use those candidates to create all 16 possible combinations of float values that could have been created using
the random.random
function:
def float_magic(a, b):
"""
Rebuild of random_rancom from randommodule.c
uses two outsputs!
"""
a = a >> 5
b = b >> 6
return (a*67108864.0+b)*(1.0/9007199254740992.0)
def floats_for_cands(a_cs, b_cs):
"""
Applies float_magic to all candidate combinations
"""
floats = []
for a_c in a_cs:
for b_c in b_cs:
floats.append(float_magic(a_c, b_c))
return floats
(The link of the full exploit script is below.)
We also have to keep in mind that the proof of work challenge of the server uses 64 bits (two internal states) of the PRNG between key generation and first IV.
Meet in the Middle
So after we can nail the variables tmp1
and tmp2
down to 16 candidates, we just need
to find the secret masks of the keys.
Since we have two keys with a mask of 22 bits, we would need to brute force keys, right? Wrong! We can employ a meet in the middle attack.
By decrypting the flag’s ciphertext with all possible key2
keys
and storing the results of the decryption together with the keys, we can go through all possible key1
keys
encrypting our plaintext and comparing the results.
So the attack works as follows:
- Send a plaintext to the server, store the returned ciphertext
- Go through all 67 million possible candidates for key2 and decrypt the ciphertext with them
- Save all 67 million ciphertext/key2 pairs in a hash table
- Go through all possible candidates for key1 and encrypt our plaintext with key1
- Compare if the encryption with key1 yields the same result as the decryption of a candidate of key2
If we found a case where the encryption of key1 matches the decryption of key2, we found our two keys!
Instead of having to go through we only have
to go through roughly possible values for
mask1
and mask2
.
Putting it together
The full exploit script can be found on github.
It is far from beeing optimized but uses the multiprocessing
module to distribute the
work over 16 processes.
We ran the script on a optimized droplet with 64 GB RAM and 16 physical cores to get good performance.
After running the script for a couple of minutes, we got:
$ p3 swag.py
After Pow
At 0
At 1
At 2
At 3
[...]
The flag is: MeePwnCTF{DO_n0t_trust_anyth1ng}
\o/